

 1 / 23 www.netio-products.com

JSON over HTTP (POST)

NETIO M2M API protocols docs
Protocol version: JSON Version 2.4

Document published: 20.07.2021

Short summary
JSON over HTTP(s) protocol is a file-based M2M API protocol, where the NETIO device is a HTTP(s)
server and the client downloads or uploads one text file document in the json format to control the
NETIO power outputs (230V power sockets or IEC-320 power outlets 110/230V).

• In default there is not HTTPs enabled. Only HTTP.
Just some NETIO devices (PowerPDU 4C) supports HTTPs secured version.

• For some NETIO devices the protocol also includes energy metering values.

• For NETIO PowerDIN 4PZ the protocol also support DI inputs states and counters.

• The JSON protocol must be enabled first in the WEB configuration of the respective device.
For details, see the “NETIO WEB configuration” chapter.

• This protocol is HTTP(s) based. There can be used different port than 80 for device web
configuration. Check the product manual

• Username and password to access the file is hidden in the HTML header.
There can be different username & password for the read and write access.
Default configuration is read/write for the user=netio password=netio.

• With write (netio.json file upload by http post) the device send you back the current (updated)
json answer content in the same structure as the netio.json file.

 2 / 23 www.netio-products.com

Supported devices

NETIO 4x Linux based devices: networked power sockets with LAN / WiFi connectivity.

• NETIO PowerPDU 4C

• NETIO 4, 4All (obsolete products)

NETIO 4x firmware – 3.0.1 and later

Standard NETIO devices: networked power sockets with LAN / WiFi connectivity.

• NETIO PowerCable REST 101x (Energy metering)

• NETIO PowerBOX 3Px

• NETIO PowerBOX 4Kx (Energy metering)

• NETIO PowerDIN 4KZ (Energy metering)

• NETIO PowerPDU 4PS

• NETIO PowerPDU 8QS (Energy metering)

Note: Firmware – 3.1.3 and later,

Note: This document provides basic info about the M2M API protocol.
Other device functions are described in the product manual.

 3 / 23 www.netio-products.com

Quick start with json & NETIO

 READ function - status

Read a netio.json file from your NETIO by HTTP(s) GET: http(s)://<netioIP>/netio.json
Example: http://192.168.1.1/netio.json

 WRITE function - control

Upload the following json file by HTTP(s) POST to: http(s)://<netioIP>/netio.json
Example: http://192.168.1.1/netio.json

netio.json file (command to switch Power output 1 to ON):

{

 "Outputs":[

 {

 "ID":1,

 "Action":1

 }

]

}

If the netio.json file & command is accepted, then NETIO device returns Status Code “200 OK” and
status json file.

Security issues
Do not use default usernames and passwords! Keep your Ethernet and WiFi networks secured.

 4 / 23 www.netio-products.com

HTTP(s) options

Most of NETIO devices do not support HTTPS protocol

• NETIO PowerCable REST 101x

• NETIO PowerBOX 3Px

• NETIO PowerBOX 4Kx

• NETIO PowerDIN 4KZ

• NETIO PowerPDU 4PS

• NETIO PowerPDU 8QS

NETIO PowerPDU 4C
There are 2 different HTTP(s) ports:

1) The web administration of the device - HTTP(s).
Web administration is in the Settings/System (HTTP) or System/Security Settings (HTTPs).

2) Separated HTTP(s) port for the M2M API protocols (XML, JSON, URL API).
Web administration is in each M2M API protocol settings.

▪ All HTTP(s) protocols (XML / JSON / URL-API) share one HTTP(s) port.
▪ For PowerPDU 4C have to be both ports (for web + URL API) http or https.
▪ Custom HTTPS certificate is not supported.

 5 / 23 www.netio-products.com

General NETIO output functions

Output status – “read” function

• 0 – Power OFF

• 1 – Power ON

Output actions – “write” function

• 0 – Turn OFF

• 1 – Turn ON

• 2 – Short OFF delay (restart)

• 3 – Short ON delay

• 4 – Toggle (invert the state)

• 5 – No change

• 6 – Ignored (return value from reading the tag)
 Actual output value is in ”State” tag (0 / 1).

Short ON / OFF delay
This command switches a power output On / Off for a defined time. It is useful for example to power-
cycle a server with a defined switch-off time, or to switch on a pump for a defined time.

The short ON / OFF delay interval can be defined in the device web administration. It is specified in
ms (milliseconds) and rounded up to hundreds of miliseconds (0,1s).
This interval can be also defined using some M2M API protocol commands. In that case, it is valid
only for a single protocol session (the following short ON / Short OFF command). When the
connection is closed or restarted, the interval is reset to the device default value (defined in the web
administration for each output).

NETIO PowerPDU 4C and NETIO 4/4All: The “short” delay is protected - the power output will remain
in the defined state regardless of any other M2M requests received. During this time, the output state
can only be changed by pressing the button on the NETIO device and this action cancel M2M short
ON/OFF command for the particular output. Other requests to control the particular output are simply
ignored and an ERROR logged with reason rejected in a device Log.

 6 / 23 www.netio-products.com

Power-Up outputs state
All outputs are OFF during the first 5 to 30 seconds after power-up (depending on device model).
After this time, all outputs are set to the selected state based on its individual settings:

• LAST state
After a power outage, the NETIO device sets each power output to the last stored state of this
one output.

• ON
The output is turned ON.

• OFF
The output stays OFF.

Note: The function Scheduler is checked during Power-Up initialization. When enabled, it can
affect one or more power output stated based on current time and date.

NETIO PowerPDU 4C and NETIO 4/4All - Custom based Lua scripts can affect output
stated too.

General NETIO input read features

Input status

• 0 – “open” / ON

• 1 – “closed” / OFF

S0 counters

• Number of S0 impulses / “ON” pulses

 7 / 23 www.netio-products.com

General NETIO Counters

- Power consumption counters can be reset to 0 manually
- Power consumption NR counters are Not Resettable
- S0 pulse counters on DI (Digital Inputs) can be reset to 0 manually

- All counters are not affected by power outage.

How to reset counters to 0
Click to button in the device settings. It will reset the counters.

 8 / 23 www.netio-products.com

Energy metering variables

Energy metering is available for:

- NETIO PowerPDU 4C
- PowerCable REST
- PowerBox 4Kx
- PowerDIN 4PZ
- PowerPDU 8QS

Parameters for the whole NETIO device:

Variable Unit Description

Voltage V Instantaneous voltage

Frequency Hz Instantaneous frequency

Total Current mA
Instantaneous total current through all power
outputs

Total Power Factor -
Instantaneous True Power Factor – weighted
average from all meters

Total Phase °
Instantaneous True Phase – weighted average
from all meters

Total Load W
Total load (power) of all power outputs
(device’s own internal consumption is not
included)

Total Energy Wh Total Counter of consumed Energy (resettable)

Total Energy NR Wh Not Resettable counter of total consumed Energy

Total Reverse Energy Wh
Counter of Reversed (produced) Energy
(resettable)

Total Reverse Energy NR Wh Not Resettable counter of total Reversed Energy

Energy Start -
Date and time of the last reset of all energy
counters

Overall True Power Factor Historical compatibility only, do not use it.

Overall Phase Historical compatibility only, do not use it.

 9 / 23 www.netio-products.com

Parameters for each power output:

Variable Unit Description

Current mA Electric current for the output

Power Factor - TPF True Power Factor for the output

Phase ° Phase for the specific power output

Energy Wh
Counter of Energy consumed per output
(resettable)

Energy NR Wh
Not Resettable counter of output consumed
Energy

Reverse Energy Wh
Counter of Energy produced per output
(resettable)

Reverse Energy NR Wh
Not Resettable counter of Reversed (produced)
Energy

Load W
Instantaneous load (power) for the specific power
output.

 10 / 23 www.netio-products.com

NETIO WEB configuration

M2M API protocols can be enabled and configured only over the web administration – select “M2M
API Protocols” in the left-hand side menu and then select the “JSON API” tab.

Picture 1 –M2M API Protocols / JSON API settings GUI

• Enable JSON API – Enable/disable the M2M API protocol

• Use custom port – Check to enable custom port setting

o Current port – Currently used port

o Custom port – Custom port set for XML / JSON / CGI API protocols

• Enable READ – Enable READ functionality

o Username / Password for READ

• Enable WRITE – Enable WRITE functionality

o Username – Username for WRITE

o Password – Password for WRITE (default: MAC address without colons, lowercase)

 11 / 23 www.netio-products.com

Notes
 The device webserver is restarted after saving the JSON API settings.

 Empty Username and Password means no authentication.

 Credentials are sent in the HTTP header, “Basic authentication” is used.
The username and password can be also provided in the URL -
http(s)://username:password@<netioIP>/netio.json

NETIO JSON protocol structure

JSON standard: RFC4627
JSON Template: 3 Space Tab

JSON API – READ (status)

HTTP(s) GET request or HTTP(s) POST request (no file or empty file)

GET Request: http(s)://<netioIP>/netio.json

READ response (status json file):

{

 "Agent": {

 "Model": "PowerDIN 4PZ",

 "Version": "2.5.4",

 "JSONVer": "2.3",

 "DeviceName": "myNetio_10",

 "VendorID": 0,

 "OemID": 0,

 "MAC": "24:A4:2C:33:25:E1",

 "SerialNumber":"24A42C3325E1",

 "Uptime": 110637,

 "Time": "2017-11-03T13:53:38+00:00",

 "NumOutputs": 4

 "NumInputs": 2

 },

 "GlobalMeasure": {

 "Voltage": 235.8,

 "Frequency": 49.9,

 "TotalCurrent": 20,

 "OverallPowerFactor": 0.22,

 "Phase": -42.90,

 "TotalLoad": 1,

 "TotalEnergy": 965,

 12 / 23 www.netio-products.com

 "EnergyStart": "2017-06-23T16:47:53+01:00"

 },

 "Outputs":[

 {

 "ID": 1,

 "Name": "output_1",

 "State": 0,

 "Action": 6,

 "Delay": 5000,

 "Current": 0,

 "PowerFactor": 0,

 "Phase":0.00,

 "Load": 0,

 "Energy": 192,

 "ReverseEnergy":0

 },

 {

 "ID": 2,

 "Name": "output_2",

 "State": 0,

 "Action": 6,

 "Delay": 5000,

 "Current": 0,

 "PowerFactor": 0,

 "Phase":0.00,

 "Load": 0,

 "Energy": 80,

 "ReverseEnergy":0

 },

 {

 "ID": 3,

 "Name": "output_3",

 "State": 0,

 "Action": 6,

 "Delay": 5000,

 "Current": 0,

 "PowerFactor": 0,

 "Phase":0.00,

 "Load": 0,

 "Energy": 196,

 "ReverseEnergy":0

 13 / 23 www.netio-products.com

 },

 {

 "ID": 4,

 "Name": "output_4",

 "State": 1,

 "Action": 6,

 "Delay": 5000,

 "Current": 20,

 "PowerFactor": 0.22,

 "Phase": -42.90,

 "Load": 1,

 "Energy": 495,

 "ReverseEnergy":0

 }

],

"Inputs":[

 {

 "ID":1,

 "Name":"Input 1",

 "State":0,

 "S0Counter":7

 },

 {

 "ID":2,

 "Name":"Input 2",

 "State":0,

 "S0Counter":0

 }

]}

}

Notes:

1) Old firmware versions contains the MAC tag only. When both tags available, use the
SerialNumber, it’s identical with printed label on the device.

2) Items/values related to metering (Voltage, Frequency, Current, PowerFactor, Load and
Energy, etc.) are available only for the NETIO PowerPDU 4C, PowerCable, PowerDIN 4PZ
and NETIO 4All models.

3) Returned status netio.json file always contains “Action” with value “6” for all outputs. This

value means “ignore” and works as a placeholder. Output state 0 / 1 is in the State value.

 14 / 23 www.netio-products.com

Values description

Global values:

"Model": "NETIO 4All" Model identification

"Version": "3.4.0" Firmware version

"JSONVer": "2.3" Protocol version

"DeviceName": "myNetio_10" Device name (user defined on web)

"VendorID": 0 Manufacturer internal use

"OemID": 0 Manufacturer internal use

"MAC": "24:A4:2C:33:25:E1" MAC address of active interface.

For LAN/Wifi devices only.

"SerialNumber": "24A42C3325E1" Serial Number of device – preferred identifier
(identical with label on delivery box).

"Uptime": 110637 [s] The Uptime value

"Time": "2017-11-03T13:53:38+00:00" Date and time of the NETIO device

"NumOutputs": 4 Number of outputs

"NumInputs": 2 Number of inputs

"Voltage": 235.8 [V] Instantaneous voltage

"Frequency": 49.9 [Hz] Instantaneous frequency

"TotalCurrent": 20 [mA] Instantaneous total current through all

 power outputs
"Phase": -41.45 [°] Instantaneous Phase weighted average

 from all meters
"TotalLoad": 1 [W] Total Power of all power outputs

"TotalEnergy": 965 [Wh] Counter of total consumed Energy (4B)

"TotalEnergyNR": 2530 [Wh] Not resettable counter of total consumed

Energy (4B)
"TotalReverseEnergy": 1 [Wh] Counter of total produced Energy (4B)

"TotalReverseEnergyNR": 8 [Wh] Not resettable counter of total produced

Energy (4B)

"EnergyStart": "2017-06-23T16:47:53+01:00" Date and time of the last reset of all energy

 counters

 15 / 23 www.netio-products.com

Values for specific output (example values below are for output 4):

"ID": 4 Output number

"Name": "output_4" Output name (user defined on web)

"State": 1 Output state

"Action": 6 Output action (6 = Ignored value, use State tag)

"Delay": 5000 [ms] Output delay for short On/Off

"Current": 20 [mA] Instantaneous current of the output

"PowerFactor": 0.22 [-] Instantaneous True Power Factor

"Phase": -30.81 [°] Instantaneous Phase of the output

"Load": 1 [W] Total Power of the output

"Energy": 965 [Wh] Counter of output consumed Energy (4B)

"EnergyNR": 2530 [Wh] Not resettable counter of consumed

Energy (4B)
"ReverseEnergy": 1 [Wh] Counter of output produced Energy (4B)

"ReverseEnergyNR": 8 [Wh] Not resettable counter of output produced

Energy (4B)

Values for specific input (example values below are for input 2):

"ID": 2 Input number

"Name":"Input 2" Input name

"State":0 Input state (0 = OFF/”open”, 1= ON/”closed”)

"S0Counter":25 S0 Counter value (4B)

JSON API – WRITE (control)

HTTP(s) POST request

ID - number of output

Outputs can be controlled by two options:

1. Action: 0 – off, 1 – on, 2 – short off, 3 – short on, 4 – toggle, 5 – no change, (6 – ignore)

2. State: 0 – off, 1 – on (Action = 6 required)

Note: Action with other value than 6 has higher priority than the State tag.

State value is not reflected in case Action = 1 to 5.
If you wish to use State tag to control an output, Action = 6 is required.

A json file can be submitted as complete structure (e.g. previously received status json with modified
control functions) or partial structure as shown below.

 16 / 23 www.netio-products.com

If the json & command is accepted, then NETIO returns Status Code “200 OK” and status json file.

Send command: http(s)://<netioIP>/netio.json

Switch Power output 1 to ON by Action tag:

{

 "Outputs":[

 {

 "ID":1,

 "Action":1

 }

]

}

or (State tag value will not be reflected)

{

 "Outputs":[

 {

 "ID":1,

 "State":0,

 "Action":1

 }

]

}

or by State tag (Action tag must have value 6)

{

 "Outputs":[

 {

 "ID":1,

 "State":1,

 "Action":6

 }

]

}

 17 / 23 www.netio-products.com

Switch Power output 2 to ON for 15 seconds, then switch it OFF.

{

 "Outputs":[

 {

 "ID":2,

 "Action":3,

 "Delay":15000

 }

]

}

Command to control more outputs:
Switch Power output 1 to ON, Toggle Output 2 and Switch Output 4 to ON for 15 seconds:

{

 "Outputs":[

 {

 "ID":1,

 "Action":1

 },

 {

 "ID":2,

 "Action":4

 },

 {

 "ID":4,

 "Action":3,

 "Delay":15000

 }

]

}

 18 / 23 www.netio-products.com

Status codes

Status codes Description

200 OK User authorized and command received

400 Bad Request Control command syntax error

401 Unauthorized Invalid Username or Password

403 Forbidden Read only

500 Internal
Server Error

Internal Server Error or Internal Server not fully started yet (e.g. after
setting change or restart)

Response syntax for “OK” state:
Status json file as described above in chapter “NETIO JSON protocol structure” / READ

Response syntax for “Error” state:

{

 "result": {

 "error": {

 "code": 200,

 "message": "OK"

 }

 }

}

 19 / 23 www.netio-products.com

NETIO PowerBOX 3Px – listing of the netio.json file
Note: In the NETIO PowerBOX 3Px model, there are no metering values available.

{

"Agent":{"Model":"3PF","DeviceName":"PowerBOX-
F2","MAC":"24:A4:2C:38:DF:F2","SerialNumber":"24A42C38DFF2","JSONVer":"2.3","Time"
:"1970-01-
01T23:05:55+01:00","Uptime":36355,"Version":"2.5.4","OemID":0,"VendorID":0,"NumOut
puts":3},

"Outputs":[

{"ID":1,"Name":"Power output 1","State":0,"Action":6,"Delay":2020},

{"ID":2,"Name":"Power output 2","State":1,"Action":6,"Delay":2020},

{"ID":3,"Name":"Power output 3","State":1,"Action":6,"Delay":2020}

]}

 20 / 23 www.netio-products.com

NETIO PowerDIN 4PZ – listing of the netio.json file
Note: In the NETIO PowerDIN 4PZ model are just 2 from 4 outputs metered.

{
"Agent":{"Model":"4PZ","DeviceName":"powerdin-
4pz","MAC":"24:A4:2C:39:67:17","SerialNumber":"24A42C396717","JSONVer":"2.3","Time
":"2021-03-
24T01:15:32+01:00","Uptime":6020,"Version":"3.0.1","OemID":400,"VendorID":0,"NumOu
tputs":4,"NumInputs":2},

"GlobalMeasure":{"Voltage":241,"TotalCurrent":0,"TotalLoad":0,"TotalEnergy":0,"Ove
rallPowerFactor":0.00,"Frequency":50.07,"Phase":0.00,"EnergyStart":"2020-12-
13T19:34:31+01:00"},

"Outputs":[
{"ID":1,"Name":"Power output
1","State":0,"Action":6,"Delay":2020,"Current":0,"PowerFactor":1.00,"Phase":0.00,"
Energy":0,"ReverseEnergy":0,"Load":0},
{"ID":2,"Name":"Power output
2","State":1,"Action":6,"Delay":2020,"Current":0,"PowerFactor":1.00,"Phase":0.00,"
Energy":0,"ReverseEnergy":0,"Load":0},
{"ID":3,"Name":"Free Contact 3","State":0,"Action":6,"Delay":2020},
{"ID":4,"Name":"Free Contact 4","State":1,"Action":6,"Delay":2020}
],

"Inputs":[
{"ID":1,"Name":"Intput 1","State":0,"S0Counter":290},
{"ID":2,"Name":"Intput 2","State":0,"S0Counter":1}
]}

 21 / 23 www.netio-products.com

NETIO PowerPDU 8QS – listing of the netio.json file
Note: In the NETIO PowerPDU 8QS model are metered just 2 channels (Output 1 & global) from total
8 outputs.

{
"Agent":{"Model":"8QS","DeviceName":"PowerPDU-
F3","MAC":"24:A4:2C:39:9F:F3","SerialNumber":"24A42C399FF3
","JSONVer":"2.4","Time":"2021-06-
08T13:44:49+01:00","Uptime":76239,"Version":"3.1.6","OemID
":600,"VendorID":0,"NumOutputs":8,"NumInputs":1},
"GlobalMeasure":{"Voltage":240.97,"TotalCurrent":0,"Overal
lPowerFactor":1.00,"TotalPowerFactor":1.00,"OverallPhase":
0,"TotalPhase":0,"Frequency":50.09,"TotalEnergy":7,"TotalR
everseEnergy":1,"TotalEnergyNR":7,"TotalReverseEnergyNR":1
,"TotalLoad":0,"EnergyStart":"1970-01-01T00:00:00+01:00"},
"Outputs":[
{"ID":1,"Name":"Power output
1","State":0,"Action":6,"Delay":5000,"Current":0,"PowerFac
tor":1.00,"Phase":0.00,"Energy":7,"ReverseEnergy":0,"Energ
yNR":7,"ReverseEnergyNR":0,"Load":0},
{"ID":2,"Name":"Power output
2","State":1,"Action":6,"Delay":5000},
{"ID":3,"Name":"Power output
3","State":0,"Action":6,"Delay":5000},
{"ID":4,"Name":"Power output
4","State":0,"Action":6,"Delay":5000},
{"ID":5,"Name":"Power output
5","State":1,"Action":6,"Delay":5000},
{"ID":6,"Name":"Power output
6","State":1,"Action":6,"Delay":5000},
{"ID":7,"Name":"Power output
7","State":1,"Action":6,"Delay":5000},
{"ID":8,"Name":"Power output
8","State":1,"Action":6,"Delay":5000}
],
"Inputs":[
{"ID":1,"Name":"Input 1","State":1,"S0Counter":0}
]}

 22 / 23 www.netio-products.com

Examples

AN21: JSON HTTP(S) protocol to control NETIO 110/230V power sockets (3x REST API)

The AN21 Application Note shows how to
access measurements and control electrical
sockets on a NETIO 4x device from third-
party applications using the JSON protocol.
AN21 demonstrates several different ways
to control NETIO power sockets by
transferring a netio.json file over http.

The first method uses the “Device HTTP(s)
File Upload” tool in the device’s web
interface. The second method transfers the
JSON file using a Chrome browser
extension. The third method uses CURL
(command-line tool) to transfer files over
http.

>> Read the AN21 on www.netio-products.com

 23 / 23 www.netio-products.com

Document history

Document
Revision

Publication
Date

Description

1.0 14.11.2017
Initial release - JSON Version 2.0, for FW 3.0.1 (Netio4x
devices)

1.1 7.12.2017 Documentation optimization - Action 6

1.2 19.12.2017 Keywords added

1.3 31.8.2018 Values description updated

1.4 6.9.2018 Infographic added

1.5 16.10.2018 Minor edits

1.6 23.11.2018 Detailed description about the Action tag implemented

1.7 29.1.2020
Added SerialNumber & MAC description for
PowerCable/PowerBox/PowerPDU/PowerDIN devices
JSON version changed to 2.1

1.8 29.1.2020
Version -> 2.2 (due to inconsistencies with N4, where 2.1
already was)

1.9 19.3.2020
Detail description of difference between MAC and
SerialNumber tag was added.

2.0 11.9.2020
JSON Version -> 2.3: Added Inputs, Phase, ReverseEnergy;
new supported devices

2.1 24.3.2021 New compatible devices listed

2.2 17.6.2021
JSON Version -> 2.4: Added Reversed energy & DI tags into
the JSON structure

2.3 20.7.2021 Minor edits

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

