Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung</td>
<td>5</td>
</tr>
<tr>
<td>Sicherheitshinweise</td>
<td>6</td>
</tr>
<tr>
<td>1. Vorstellung</td>
<td>7</td>
</tr>
<tr>
<td>1.1. Charakteristik</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Spezifikation</td>
<td>9</td>
</tr>
<tr>
<td>1.3. Systemanforderungen</td>
<td>10</td>
</tr>
<tr>
<td>2. Bedienung und Einstellung</td>
<td>11</td>
</tr>
<tr>
<td>2.1. Ausgänge</td>
<td>12</td>
</tr>
<tr>
<td>Ansteuerung der Ausgänge</td>
<td>12</td>
</tr>
<tr>
<td>Allgemeine Einstellung der Ausgänge</td>
<td>14</td>
</tr>
<tr>
<td>Zeitschaltuhr</td>
<td>15</td>
</tr>
<tr>
<td>Watchdog</td>
<td>16</td>
</tr>
<tr>
<td>Verbrauchsmessung</td>
<td>18</td>
</tr>
<tr>
<td>2.2. Bluetooth</td>
<td>19</td>
</tr>
<tr>
<td>Bluetooth-Gerät koppeln</td>
<td>20</td>
</tr>
<tr>
<td>2.3. Einstellung der Benutzerkonten</td>
<td>21</td>
</tr>
<tr>
<td>2.4. Einstellung der Zeitpläne</td>
<td>23</td>
</tr>
<tr>
<td>2.5. Einstellung der Aktionen</td>
<td>25</td>
</tr>
<tr>
<td>2.6. Geräteinstellung</td>
<td>26</td>
</tr>
<tr>
<td>Netzwerksmodus</td>
<td>26</td>
</tr>
<tr>
<td>WLAN-Einstellung</td>
<td>27</td>
</tr>
<tr>
<td>Netzwerkeinstellung</td>
<td>28</td>
</tr>
<tr>
<td>Einstellung einer sicheren Verbindung</td>
<td>30</td>
</tr>
<tr>
<td>Zeiteinstellung</td>
<td>31</td>
</tr>
<tr>
<td>E-Mail-Einstellungen</td>
<td>31</td>
</tr>
<tr>
<td>Aktualisierung der Firmware</td>
<td>33</td>
</tr>
<tr>
<td>Systemeinstellungen</td>
<td>35</td>
</tr>
<tr>
<td>2.7. Protokoll</td>
<td>36</td>
</tr>
<tr>
<td>2.8. Manuelle Bedienung</td>
<td>37</td>
</tr>
<tr>
<td>2.9. Status-LEDs</td>
<td>37</td>
</tr>
<tr>
<td>2.10. Akustische Signalisierung</td>
<td>38</td>
</tr>
<tr>
<td>2.11. Kommunikation über die Schnittstelle KSHELL</td>
<td>38</td>
</tr>
<tr>
<td>Übersicht der Befehle für KSHELL</td>
<td>39</td>
</tr>
<tr>
<td>2.12. Beheben von Schwierigkeiten</td>
<td>40</td>
</tr>
<tr>
<td>Passwort vergessen. Reset zur Wiederherstellung der Werkseinstellungen</td>
<td>40</td>
</tr>
<tr>
<td>Problem mit dem Firmware-Update</td>
<td>40</td>
</tr>
<tr>
<td>Austausch der Sicherung</td>
<td>40</td>
</tr>
<tr>
<td>A. Beschreibung der Lua-Sprache</td>
<td>41</td>
</tr>
<tr>
<td>A.1. Grundlagen der Lua-Sprache</td>
<td>41</td>
</tr>
<tr>
<td>A.2. Spezifikation der Lua-Umgebung in NETIO4</td>
<td>42</td>
</tr>
<tr>
<td>A.3. Ansteuerung der Ausgänge</td>
<td>42</td>
</tr>
<tr>
<td>Durchschalten der Ausgänge</td>
<td>42</td>
</tr>
<tr>
<td>Rücksetzen der Ausgänge</td>
<td>43</td>
</tr>
<tr>
<td>A.4. Variables Gerät NETIO4</td>
<td>43</td>
</tr>
<tr>
<td>Variablen für gekoppelte Bluetooth-Geräte</td>
<td>43</td>
</tr>
<tr>
<td>A.5. Aktionen von NETIO4</td>
<td>44</td>
</tr>
<tr>
<td>A.6. Ereignis IncomingCgi als Aktionsauslöser</td>
<td>45</td>
</tr>
<tr>
<td>A.7. Weitere Aktionsauslöser</td>
<td>46</td>
</tr>
<tr>
<td>A.8. Spezielle Variablen</td>
<td>46</td>
</tr>
<tr>
<td>A.9. Funktionen und Bibliotheken</td>
<td>47</td>
</tr>
</tbody>
</table>
delay ... 47
milliDelay ... 47
log .. 48
logf .. 48
mail ... 49
ping ... 50
A.10. Beispiele ... 51
 Eine Aktion zur Bearbeitung einer eingehenden CGI-Anforderung mit
Statusänderung der Ausgänge ... 51
Aktion zur Ansteuerung eines Ausgangs auf Grundlage der Verfügbarkeit eines
weiteren Geräts im Netzwerk ... 52
Aktion für zyklische Auslass-Steuer ... 53
Aktionen, um Ausgänge basierend auf der Verfügbarkeit von Bluetooth-Geräten
zu steuern ... 53
Schlussbemerkungen .. 54
Konformitätserklärung .. 55
Abbildungsverzeichnis

1. Ansteuerung der Ausgänge ... 12
2. Allgemeine Einstellung der Ausgänge ... 14
3. Einstellung der Zeitschaltuhr .. 15
4. Einschaltung der Funktion Watchdog .. 16
5. Verbrauchsmessung .. 18
6. Zähler zurücksetzen ... 19
7. Bluetooth-Management .. 20
8. Benutzer hinzufügen .. 21
9. Detaillierte Einstellung der Benutzerberechtigungen ... 22
10. Benutzerdefinierten Zeitplan hinzufügen .. 23
11. Ein sekundengenaues Intervall hinzufügen ... 24
12. Aktion hinzufügen .. 25
13. Einstellung des Netzwerkmodus .. 26
14. WLAN-Einstellung .. 27
15. Netzwerkeinstellung .. 29
16. Einstellung einer sicheren Verbindung ... 30
17. Datum und Uhrzeit einstellen ... 31
18. E-Mail-Einstellungen .. 32
19. Details über die installierte Firmware .. 33
20. Firmware aus Datei aktualisieren .. 34
21. Systemeinstellungen .. 35
22. Protokoll .. 36
23. Ausgabe der Funktion log() ... 41
Einleitung

Vielen Dank dass Sie das Produkt der Gesellschaft KOUKAAM gekauft haben. Vor seiner Inbetriebnahme lesen Sie bitte sorgfältig diese Bedienungsanleitung und die Anleitung zur Schnellinstallation durch, die zum Bestandteil des Lieferumfangs gehören. Dadurch verhindern Sie eine Fehlinstallation oder eine unsachgemäße Nutzung des Geräts.

Lesen Sie aufmerksam die folgenden Hinweise durch. Das Gerät, das Sie gekauft haben, arbeitet mit Spannung. Ein unsachgemäßer Umgang kann zu Schäden am Gerät führen oder die Person verletzen, die das Gerät bedient.
Sicherheitshinweise

1. Der Hersteller haftet nicht für mögliche Schäden, die durch eine unsachgemäße Nutzung oder Aufstellung in einer ungeeigneten Umgebung verursacht werden.

2. Das Gerät ist nicht zur Anwendung im Außenbereich geeignet.

3. Verwenden Sie das Gerät nicht bei starken Vibrationen.

4. Unbefugt vorgenommene Änderungen an diesem Gerät können zur Beschädigung des Geräts führen oder einen Brand auslösen.

5. Verhindern Sie den Kontakt mit Flüssigkeiten und setzen Sie das Gerät nicht hohen Temperaturen aus.

6. Bewahren Sie das Gerät vor Fall.

7. Schließen Sie nur die Geräte an, die für den elektrischen Netzbetrieb genehmigt sind.

8. Nicht hintereinander stecken.

10. Spannungsfrei nur bei gezogenem Stecker.

11. Funktioniert das Gerät nicht richtig, trennen Sie es vom Stromnetz und kontaktieren Ihren Händler.
1. Vorstellung

Stellen Sie sich vor, Sie reisen durch die Welt und Sie können aus der Ferne oder über einen Zeitschalter die Stromversorgung Ihrer elektrischen Verbraucher wie Computer, Server, Router, Gateways, Sicherungs-/Überwachungssysteme oder andere Verbraucher steuern.

Dieses Handbuch gilt für folgende Modelle:

- **NETIO4** Basismodell mit integriertem WLAN.
- **NETIO4 All** NETIO4 mit zusätzlicher Verbrauchsmessung für jeden Ausgang und mit Unterstützung von Bluetooth 4.0 LE.
1.1. Charakteristik

- Vier steuerbare Ausgänge.
- Standardisierte Ausgänge ermöglichen einen direkten Anschluss vom gespeisten Gerät.
- Verfügbare Ausgangsvarianten: DE, FR, CZ, US oder UK.
- Jeder Ausgang verfügt über eine eigene Status-LED und Betätigungstaste.
- Robustes Design, jeder Ausgang besitzt einen eigenen Überspannungsschutz.
- 1,2 Meter langes Netzkabel und Schalter am Gerät.
- Rücksetzsicherung (15 A)
- Anmeldung mit verschlüsseltem Passwort möglich.
- Unterstützung von Bluetooth 4.0 LE für Erweiterungen und Sensoren (nur für NETIO4 All).
- Unabhängiger Verbrauchsmesser für jeden Ausgang (nur für NETIO4 All).
- Status-LEDs für WLAN und Bluetooth.
- Watchdog zur Überwachung der angeschlossenen Netzgeräte mit der Möglichkeit, diese neu zu starten.
- Die vom Benutzer erstellten Zeitpläne ermöglichen eine Zeitsteuerung der Ausgangsschaltung.
- Nach einem Neustart oder dem Einschalten des Geräts werden die Ausgänge in den vorherigen Zustand gebracht.
- Integration durch CGI-Befehle: NETIO4 kann mithilfe von CGI-Befehlen gesteuert werden, und über NETIO4 können mithilfe von CGI-Befehlen weitere Geräte gesteuert werden.
- LUA-Skriptsprache für die Systemintegration und Anpassung durch Systemintegratoren.
- Fortgeschrittene Integration mit XML-API, NDA-pflichtig.
- E-Mail-Benachrichtigung über die Schließung eines Ausgangs, Zeitgebers oder Watchdog.
- Benutzerkonten mit einstellbaren Berechtigungen.
- Lokalisierte Benutzerschnittstelle für CZ, EN, DE, ES, IT.
- Mobile Anwendungen für mobile Geräte mit iOS und Android zur Fernsteuerung der Ausgänge.
- Unterstützte Protokolle: HTTP, HTTPS, SMTP, DNS, NTP, UPnP, DHCP.
1.2. Spezifikation

Versorgungsspannung: 90-240 V; 50/60 Hz; 15 A

Geschaltete Ausgänge:
EU – 8[A] A / 90-240 V ~ jeder Ausgang

Sicherung: Eingebaute 15 A Sicherung

Mit Mikroabschaltung: μ

Schaltzyklen, maximal: 1E5

Maximale Stoßspannung: 1.5 kV

Verbrauch: 4.1 W

Materialien: Materialgruppe IIIa

Schnittstelle: 1x RJ-45 10/100 Mbit/s
Wi-Fi 802.11b/g/n 2.4 GHz
Bluetooth 4.0 LE 2.4 GHz (nur für NETIO4 All)

Antennen:
NETIO4: 1x Festantenne mit 2 dB Antennenverstärkung
NETIO4 All: 2x Antenne (eine für WLAN, eine für Bluetooth) mit 3 dB Antennenverstärkung über Reverse-SMA-F-Verbinder

Abmessungen: 302 × 58 × 90 mm (H × B × T)

Kabellänge 1.2 m

Umgebung:
Betriebstemperatur 0 - 50 °C
Dauerbetrieb bis zu 2.000 m über Meeresspiegel
Verschmutzungsgrad 2

Das Gerät benötigt keine zusätzliche Kühlung

Schutzart: IP30

Schutzklasse: Klasse I

Schalter der Kategorie: 1
1.3. Systemanforderungen

- Unterstützung einer Vielzahl von Browsern:
 - Internet Explorer 9 oder neuer
 - Mozilla Firefox 20 oder neuer
 - Google Chrome 26 oder neuer
 - Safari 5.1 oder neuer
- Computer mit unterstütztem Internetbrowser und aktiver JavaScript-Unterstützung.
2. Bedienung und Einstellung

Mobile Application

2.1. Ausgänge

Ansteuerung der Ausgänge

Abbildung 1. Ansteuerung der Ausgänge

Gerade eingeschalteter Ausgang

Allgemeine Einstellung der Ausgänge

Karte **Allgemein** dient zur Einstellung vom betreffendem Ausgang. Ausgangsname erlaubt beliebiges benennen des Ausgangs, **Name** wird dann oberhalb der vier Symbole angezeigt und dient zur besseren Übersicht. **Verzögerung beim Neustart** ist eine ganze Zahl, welche die Zeit in Sekunden angibt, über welche entsprechende Ausgang beim Restart ausgeschaltet bleibt, bevor er wieder eingeschaltet wird.

Anmerkung

![Abbildung 2. Allgemeine Einstellung der Ausgänge](image)

Mit Anklicken von Veränderungen speichern wird die **Einstellung gespeichert**.

Zeitschaltuhr

Während der Einstellung der Zeitschaltuhr können die angezeigten Zeitpläne nicht geändert werden. Wenn Sie die Zeitplanänderung ändern möchten, verwenden Sie die Schaltfläche **Zeitplan bearbeiten**.

Die Zeitschaltuhr kann durch Betätigen der Schaltfläche **Zeitschaltuhr** am ausgewählten Ausgang manuell aus-/eingeschaltet werden. Das Ausschalten der Zeitschaltuhr lässt den Ausgang im aktuellen Zustand, aber dieser wird nun manuell gesteuert. Das Einschalten der Zeitschaltuhr bringt die Ausgänge in den Zustand gemäß Zeitplan.

Automatische Ausschaltung der Zeitschaltuhr

Beachten Sie, dass durch die Einschaltung eines Ausgangs mithilfe der Schaltfläche **Stromversorgung** gleichzeitig auch die Ausschaltung seiner Zeitschaltuhr erfolgt. Darauf werden Sie im Dialogfenster der Ausgangseinstellung hingewiesen.

Abbildung 3. Einstellung der Zeitschaltuhr
Watchdog

Funktion Watchdog dient der Überwachung, ob das angeschlossene Gerät im Netzwerk läuft. Wenn das überwachte Gerät nicht in einem einstellbaren Intervall auf die Ping-Fragen antwortet, wird der Ausgang, an der diese Funktion eingestellt ist, für die gegebene Zeit Aus und wieder Eingeschaltet werden. Dadurch wird ein Neustart des angeschlossenen Gerätes durchgeführt. Um ein unendliches Neustarten bei Störung des überwachten Gerätes zu beschränken, kann die maximale Anzahl der Versuche für der gegebenen Ausgang eingestellt werden.

Abbildung 4. Einschaltung der Funktion Watchdog

IP Adresse
IP Adresse des überwachten Geräts.

Ping Intervall
Intervall (in Sekunden), in dem die Pings an das überwachte Gerät gesendet werden.

Ping Zeitverzögerung
Intervall, nach dessen Ablauf das Ergebnis des Ping-Befehls als erfolglos gilt.

Einschaltverzögerung

Nach X Neustarts
Die Anzahl der Neustarts, nach denen die Funktion Watchdog das Neustarten stoppen soll, um ein periodisches Neustarten zu verhindern (z. B. bei einer Störung an einem Ausgang eines angeschlossenen Geräts).
Watchdog ausschalten
Nach einer Überschreitung der vorgegebenen Anzahl von Neustarts wird die Funktion Watchdog ausgeschaltet und der Ausgang bleibt eingeschaltet.

Ausgang ausschalten
Nach einer Überschreitung der vorgegebenen Anzahl von Neustarts wird der Ausgang ausgeschaltet und die Funktion Watchdog bleibt eingeschaltet. Falls die Ausgangseinschaltung mit aktivierter Zeitschaltuhr angesteuert wurde, wird auch die Zeitschaltuhr ausgeschaltet.

Watchdog und Ausgang gleichzeitig ausschalten
Nach einer Überschreitung der vorgegebenen Anzahl von Neustarts werden die Funktion Watchdog und der Ausgang ausgeschaltet. Falls die Ausgangseinschaltung mit aktivierter Zeitschaltuhr angesteuert wurde, wird auch die Zeitschaltuhr ausgeschaltet.

E-Mail senden, wenn das Gerät nicht reagiert
Sie können immer dann eine E-Mail senden, wenn das angesteuerte Gerät nicht mehr reagiert und ein Neustart des Ausgangs vorgenommen werden muss. Um die Funktionalität dieser Option zu gewährleisten, muss die E-Mail-Einstellung im Abschnitt „E-Mail-Einstellungen“ korrekt sein.

Warnung
Wir weisen darauf hin, dass die Funktion nur dann aktiv ist (und Ping-Befehle sendet), wenn der jeweilige Ausgang eingeschaltet ist. Falls keine Schaltung durch die Zeitschaltuhr gesetzt ist, muss der jeweilige Ausgang zuerst manuell eingeschaltet werden. Neben der Bezeichnung eines eingeschalteten Ausgangs, bei gleichzeitig aktiver Funktion Watchdog, erscheint weiter die Schaltfläche Link, mit der auf die IP-Adresse des überwachten Geräts gewechselt werden kann.
Verbrauchsmessung

Nur für ausgewählte Modelle

Diese Funktion ist nur für ausgewählte Modelle der Reihe NETIO4 verfügbar. Vergewissern Sie sich bitte, dass die Funktion bei Ihrem Modell unterstützt wird. Die einzelnen Modelle sind unter „Kapitel 1, Vorstellung“ beschrieben.

Abbildung 5. Verbrauchsmessung

Die zweite Angabe jedes Ausgangs zeigt den Kumulierten Verbrauch in Wattstunden (Wh) (ggf. Kilowattstunden (kWh)) in einem Zeitraum an, d. h. der Gesamtverbrauch der an den jeweiligen Ausgang angeschlossenen Geräte seit einem gewählten Datum bis heute. In der Grundeinstellung wird der kumulierte Verbrauch seit dem ersten NETIO4-Einschalten gezählt, wenn eine automatische Zeitaktualisierung von.

Abbildung 6. Zähler zurücksetzen

2.2. Bluetooth

Nur für ausgewählte Modelle

Diese Funktion ist nur für ausgewählte Modelle der Reihe NETIO4 verfügbar. Vergewissern Sie sich bitte, dass die Funktion bei Ihrem Modell unterstützt wird. Die einzelnen Modelle sind unter „Kapitel 1, Vorstellung“ beschrieben.

Benutzeraktionen für BT-Geräte können **Gerät ist wieder verbunden** oder **Gerät wurde getrennt** oder den Wert einer globalen Variablen `devices.<sensorName>.connected` reagieren. Eine ausführliche Beschreibung finden Sie im Anhang A, Beschreibung der Lua-Sprache.
Bluetooth-Gerät koppeln

Neu gefundene BT-Geräte können durch Klicken auf den Namen hinzugefügt werden. Ein Dialogfeld zur Eingabe vom Wunschnamen und PIN-Code erscheint. Nach der Eingabe des Namens und PIN (siehe Dokumentation Ihres Geräts), drücken Sie auf Hinzufügen, die Ihr Gerät wird mit NETIO4 gekoppelt.

Abbildung 7. Bluetooth-Management
2.3. Einstellung der Benutzerkonten

Falls NETIO4 von mehreren Benutzern verwendet werden soll, ist es angebracht, ihnen unterschiedliche Konten mit entsprechenden Berechtigungen zuzuweisen. Wählen Sie im linken Menü den Menüpunkt **Benutzer**. NETIO4 unterscheidet zwischen drei grundlegenden Benutzerarten:

- **Administrator** Benutzer mit voller Berechtigung.
- **Benutzer** Ein Benutzer, der die Ausgänge betätigen kann, aber nicht Systemeinstellungen ändern darf.
- **Besucher** Ein Benutzer, der keine Einstellungen ändern kann. Er kann nur den aktuellen Ausgangsstatus verfolgen.

Anmerkung

NETIO4 unterstützt bis zu 5 Benutzerkonten. Ein Benutzername muss mit einem Buchstaben beginnen und darf nur Ziffern und Buchstaben ohne diakritische Zeichen enthalten.
Wählen Sie je nach Bedarf eine der obigen Möglichkeiten. Wenn Sie die Berechtigungen detaillierter einstellen möchten, klicken Sie auf den Link **Mehr**, um eine Dropdown-Liste der Berechtigungen zu öffnen:

Abbildung 9. Detaillierte Einstellung der Benutzerberechtigungen

Bestätigen Sie den Vorgang durch ein Klicken auf die Schaltfläche **Benutzer erstellen**. Auf ähnliche Weise können die Benutzerkonten später bearbeitet werden.
2.4. Einstellung der Zeitpläne

Anmerkung

Damit der ausgewählte Ausgang dem Zeitplan entsprechend schaltet, muss dafür die Zeitschaltuhr im Abschnitt „Zeitschaltuhr“ eingestellt werden.

Abbildung 10. Benutzerdefinierten Zeitplan hinzufügen

Ein Intervall kann schnell durch Drücken der linken Maustaste an der Stelle des gewünschten Tages und der jeweiligen Uhrzeit erstellt werden, indem mit gedrückter linker Maustaste das Intervall aufgezogen wird. Ein bereits vorhandenes Intervall kann durch Ziehen der Intervallenden weiter verkürzt oder verlängert werden. Wenn Sie ein Intervall löschen möchten, bewegen Sie die Maus auf das Intervall und drücken Sie die rechte Maustaste. Wenn Sie ein Intervall erstellen möchten, das den ganzen Tag umfasst, müssen Sie nur in der Spalte **Den ganzen Tag** auf ein Feld zu klicken. Intervalle (einschl. der ganztägigen) können durch Drücken und Ziehen auch für mehrere Tage erstellt werden.

Zeitplan löschen

Durch das Löschen eines Zeitplans werden alle Zeitschaltuhren, die für diesen Zeitplan erstellt wurden, automatisch deaktiviert. Der Status der vorhandenen Ausgänge wird sich nicht ändern, jedoch werden sie nun manuell gesteuert.
2.5. Einstellung der Aktionen

Abbildung 12. Aktion hinzufügen

Den eigentlichen Aktionsinhalt, also was nach dem Eintreten des eingestellten Ereignisses geschehen soll, schreiben Sie im Quelltext der Lua-Sprache. Eine grundlegende Beschreibung der Lua-Sprache und ihrer Syntax finden Sie in der Anlage Anhang A, Beschreibung der Lua-Sprache. Zur Vereinfachung und Erleichterung der Codierung wird die Syntaxhervorhebung der Lua-Sprache unterstützt.
2.6. Geräteeinstellung

Für die richtige Funktion des Geräts ist es nötig, die Einstellung Aufmerksam zu machen. Durch Klicken auf Einstellungen im linken Menü wird ein Untermenü angezeigt, in dem einzelne Produkteinstellungen gewählt werden können.

Netzwerkmodus

Um die NETIO4-Netzwerkschnittstellen richtig einzustellen, klicken Sie im linken Menü „Einstellungen“ auf die Schaltfläche Netzwerkmodus. Sie können aus vier verschiedenen Netzwerkmodi wählen, je nach dem ob Sie eine Ethernet- und/oder WLAN-Schnittstelle verwenden.

Wenn Sie kein WLAN auf Ihrem NETIO4 verwenden möchten, wählen Sie Modus Kabel. Ihr NETIO4 ist über Ethernet angeschlossen (primäre Netzwerkschnittstelle) und WLAN ist ausgeschaltet.

Bedienung und Einstellung

Im Modus **Wi-Fi Access Point** ist Ihr NETIO4 über Ethernet (primäre Netzwerkschnittstelle) wie im Modus „Kabel“ verbunden, dient aber auch als WLAN-Zugangspunkt. Weitere Geräte können über WLAN (sekundäre Netzwerkschnittstelle) an Ihr NETIO4 angeschlossen werden und Zugriff auf die Ethernet-Schnittstelle erhalten (Ethernet mit WLAN über eine WLAN-Bridge verbunden). Der DHCP-Server ist in diesem Modus nicht verfügbar.

Der Modus **Netio-Konfiguration** ist dem Modus „Wi-Fi Access Point“ ähnlich, aber das Ethernet-Netzwerk und WLAN sind in diesem Fall getrennt (WLAN nicht mit Ethernet verbunden), und über die WLAN-Schnittstelle (mit IP-Adresse 192.168.2.78) läuft der DHCP-Server im Netzwerk (192.168.2.0/24).

Je nach gewähltem Netzwerkmodus werden Sie aufgefordert, entsprechende Änderungen der Einstellung an der primären Netzwerkschnittstelle und dem WLAN vorzunehmen, falls notwendig. Um den ausgewählten Netzwerkmodus erfolgreich einzustellen, müssen Sie alle erforderlichen Änderungen vornehmen.

WLAN-Einstellung

Wählen Sie im linken Menü „Einstellungen“ den Menüpunkt **WLAN**. Je nachdem, welcher Netzwerkmodus aktiv ist, stellen Sie die weiter unten beschriebenen Menüpunkte ein.

Wählen Sie zuerst den Netzwerkmodus

Als Erstes muss ein Netzwerkmodus gewählt werden, der ermittelt, ob die WLAN-Schnittstelle eingeschaltet ist und in welchem Modus sie aktiv ist. Im Modus „Kabel“ ist das WLAN ausgeschaltet und das Menü ist nicht verfügbar.

Sind Sie mit dieser Einstellung nicht sicher, fragen Sie Ihren Netzwerkadministrator oder Internetdienstanbieter.

Abbildung 14. WLAN-Einstellung

Mode

Es wird angezeigt, in welchem Modus das WLAN arbeitet.

Status (nur im Modus „Client“)

Zeigt an, ob NETIO4 an ein gewähltes Netzwerk angeschlossen wurde.
Netzwerk-SSID
Geben Sie Ihren WLAN-Identifizierer an (nur im Modus „Access Point“) oder wählen Sie ein vorhandenes Netzwerk, mit dem Sie sich verbinden möchten (nur im Modus „Client“). Wenn Sie kein anzuschließendes Netzwerk sehen, nutzen Sie die Schaltfläche Zurücksetzen oder geben Sie die Netzwerk-SSID manuell an (falls die SSID nicht öffentlich verfügbar ist).

Sicherheit
Typ der WLAN-Absicherung, wenn eine verwendet wird.

Verschlüsselungstyp
Typ der WLAN-Verschlüsselung, falls es gesichert ist.

Passwort
Zugriffspasswort für drahtloses Netzwerk, falls es gesichert ist.

Channel (nur im Modus „Access Point“)
Wählen Sie den Kanal Ihres WLAN.

SSID-Übertragung verbieten (nur im Modus „Access Point“)
Aktivieren Sie diese Option nur, wenn Sie Ihr WLAN verstecken möchten.

Speichern Sie die Einstellung durch Klicken auf die Schaltfläche Änderungen speichern.

Netzwerkeinstellung
Abbildung 15. Netzwerkeinstellung

Warnung

Bitte beachten Sie, dass wenn der Remote-Zugang funktionieren soll, Ihr Router die Steuerung anhand von UPnP-Protokollen unterstützen muss und erforderliche Parameter eingestellt sein.
müssen. Sind Sie mit dieser Einstellung nicht sicher, fragen Sie Ihren Netzwerkadministrator oder Internetdienstanbieter.

Es ist empfehlenswert, die Option **Dem Programm bei der Suche erlauben, Netzwerkeinstellungen zu ändern** auszuschalten, nachdem das Gerät im Netzwerk gefunden wurde und die primäre Veränderung der grundlegenden Netzwerkparameter stattgefunden hat. Durch Betätigen der Schaltfläche **Lokalisieren** blinkt die rote LED am Ausgang Nr. 1 und erleichtert so, das physische Auffinden des ausgewählten NETIO4, wenn mehrere Geräte im Netzwerk vorhanden sind.

Warnung

Speichern Sie die Einstellung durch Klicken auf die Schaltfläche **Änderungen speichern**.

Einstellung einer sicheren Verbindung

Wählen Sie im linken Menü „Einstellungen“ den Menüpunkt **Sichere Verbindung**. NETIO4 unterstützt sichere Verbindungen über HTTPS. Um diese Funktion zu nutzen, aktivieren Sie die Option **Eine sichere Verbindung (HTTPS) Einschalten**, und bestätigen Sie mit **Änderungen speichern**. Anschließend wird ein selbst signiertes Zertifikat generiert, das automatisch an das Webgerät weitergeleitet wird. Alle aktiven Verbindungen werden währenddessen abgebrochen und dann wieder hergestellt. In Ihrem Web-Browser muss eine dauerhafte Ausnahme für das erstellte Zertifikat eingestellt werden.
Zeiteinstellung

Im linken Menü wählen Sie das Feld Datum/Uhrzeit. Durch die Auswahl einer Stadt wird zuerst die Zeitszone, in der NETIO4 betrieben wird, festgelegt (kann sich von der Zeit des Computers, von dem Sie sich an NETIO4 anschließen, unterscheiden).

Anmerkung

Ist Ihr NETIO4 beim ersten Start an ein Netzwerk mit Internetzugriff angeschlossen, wird das Datum und die Uhrzeit in der Zeitzone des Nullmeridians automatisch eingestellt.

Speichern Sie die Einstellung durch Klicken auf die Schaltfläche Änderungen speichern.

E-Mail-Einstellungen

Im linken Menü wählen Sie das Feld E-Mail. Die Einstellung wird zum Versenden von E-Mail-Nachrichten verwendet.
Abbildung 18. E-Mail-Einstellungen

SMTP-Server: Server, über den E-Mail gesendet wird.

SMTP-Authentifizierung zulassen Verwenden Sie diese Option, wenn der SMTP-Server eine Authentifizierung erfordert. Geben Sie in dem Fall einen Benutzernamen und Passwort für die Anmeldung am SMTP-Server an.

TLS-Verschlüsselung zulassen Verwenden Sie diese Option, wenn der SMTP-Server eine TLS-Verschlüsselung erfordert.

Empfänger Geben Sie E-Mail-Adressen der Empfänger ein, die durch ein Komma voneinander getrennt sind.

Benutzerdefinierte Absenderadresse verwenden Wählen Sie diese Option, wenn Sie eine andere Absenderadresse als die Basisadresse des Absenders für alle E-Mails aus Ihrem Gerät verwenden möchten.

Von Benutzerdefinierte Absenderadresse.

Speichern Sie die Einstellung durch Klicken auf die Schaltfläche Änderungen speichern. Mit der Schaltfläche Test-E-Mail verschicken können Sie dann die korrekte Einstellung testen.
Aktualisierung der Firmware

Der Abschnitt Firmware dient zur Aktualisierung der Firmware in Ihrem Gerät. Details über die installierte Firmware-Version erhalten Sie durch Klicken auf die Schaltfläche Details anzeigen.

Abbildung 19. Details über die installierte Firmware

Um die ausgewählte Firmware herunterzuladen, klicken Sie auf mit dem Namen. Die bereits heruntergeladene Firmware ist grün hervorgehoben und besitzt eine Legende. Klicken Sie zum Installieren der heruntergeladenem Firmware auf die Schaltfläche mit dem Namen der Firmware und bestätigen Sie anschließend die Installation mithilfe der Schaltfläche Aktualisierung installieren. Wenn Sie die heruntergeladene Firmware gleich installieren möchten, aktivieren Sie beim Download die Option Nach Download-Abschluss automatisch installieren.

Warnung

Während der Firmware-Installation wird NETIO4 neu gestartet. Schalten Sie während dieses Vorgangs das Gerät nicht aus und starten Sie es nicht neu. Dadurch könnte die Firmware und die Gerätefunktionalität beeinträchtigt werden.

Sie erhalten durchgehend Informationen zum Installationsablauf. Abschließend wird eine Meldung über die erfolgreiche Aktualisierung angezeigt und es erfolgt eine Weiterleitung zum Anmeldebildschirm. Während der Firmware-Aktualisierung blinkt die LED von Ausgang Nr. 3 rot und die LED von Ausgang 4 leuchtet rot (Abschnitt 2.9, „Status-LEDs“).
Systemeinstellungen

In diesem Abschnitt können Sie grundlegende Einstellungen vornehmen und die Hauptparameter anzeigen.

![Abbildung 21. Systemeinstellungen](image)

Laufzeit
Zeit seit dem letzten Neustart des Geräts.

Firmware-Version
Aktuell installierte Version und Link für ein mögliches Aktualisieren auf eine neuer Version.

Schaltverzögerung
Verzögerung in Sekunden zwischen dem Einschalten von zwei oder mehreren Ausgängen. Wie und wann diese Variable die Ausgangsschaltung beeinflusst, erfahren Sie unter „Gerade eingeschalteter Ausgang“.

Tasten für manuelle Steuerung sperren
Durch Aktivierung der Option wird die Ausgangssteuerung mithilfe von Tasten deaktiviert.

Status-LEDs sperren
Durch Aktivierung der Option werden die Status-LEDs am Gerät deaktiviert.

KSHELL erlauben
Option zum Aktivieren KSHELL Kommunikation (siehe Abschnitt 2.11, „Kommunikation über die Schnittstelle KSHELL“).

Speichern Sie die Einstellung durch Klicken auf die Schaltfläche Änderungen speichern. Durch Betätigen der Schaltfläche Auf Werkseinstellungen zurücksetzen wird NETIO4 in die ursprüngliche Einstellung zurückgesetzt. Dadurch werden sämtliche Einstellungen gelöscht und die ursprünglichen Werte wiederhergestellt. Im Bestätigungsdialogfeld kann durch die Aktivierung der Option Netzwerkeinstellung beibehalten diese Einstellung für eine leichtere Gerätefindung nach der Wiederherstellung erhalten bleiben. Durch Klicken auf die Schaltfläche Einstellungen zurücksetzen wird das eigentliche Zurücksetzen auf Werkseinstellungen gestartet.
Warnung
Während der Wiederherstellung auf Werkseinstellungen wird NETIO4 neu gestartet.

2.7. Protokoll
Wählen Sie im linken Menü den Menüpunkt Ereignisprotokoll.

Abbildung 22. Protokoll

Im Protokoll werden vier Meldungstypen aufgenommen.

Info Es handelt sich um informative Berichte, in denen der übliche Gerätebetrieb dokumentiert wird, z. B. der Start einer Anwendung oder die Durchführung einer automatischen Datenbankwartung. In dieser Kategorie können auch benutzerdefinierte Berichte mithilfe von Benutzeraktionen hinzugefügt werden (siehe Abschnitt Abschnitt 2.5, „Einstellung der Aktionen“).
Notice Ankündigung einer Gerätetätigkeit, z. B. der Anfang und das Ende einer Benutzersitzung.

Warning In der Kategorie sind auch Warnmeldungen enthalten, z. B. eine fehlgeschlagene Anmeldung bei Eingabe eines falschen Benutzernamen oder Kennworts.

Error Diese Meldungen signalisieren ein nicht standardmäßiges und potentiell fehlerhaftes Verhalten des Geräts.

2.8. Manuelle Bedienung

2.9. Status-LEDs

Die Status-LEDs informieren den Benutzer über den Zustand der Ausgänge und über spezifische Zustände des Geräts.

Jeder Ausgang ist mit einer zweifarbig, grün-roten LED ausgestattet, die sich über die Taste für die manuelle Betätigung befindet. Die grüne LED der einzelnen Ausgänge dient zur Information über den aktuellen Ausgangszustand. Leuchtet die LED am Ausgang grün, ist der Ausgang eingeschaltet. Leuchtet sie nicht grün, ist der Ausgang ausgeschaltet. Eine grün blinkende LED bedeutet, dass der Ausgang neu gestartet bzw. gestartet wird.

Eine rote LED der einzelnen Ausgänge dient zur Information über verschiedene Zustände des ganzen Geräts. Möglich sind folgende Zustände:

- **LED am Ausgang 1 blinkt rot**: Es wurde die Lokalisierungsfunktion gestartet.
- **LED am Ausgang 2 leuchtet rot**: Fehler beim Versenden einer Anforderung an DHCP.
- **LED am Ausgang 3 blinkt rot**: Firmware wird aktualisiert.
- **LED am Ausgang 4 leuchtet rot**: Das Gerät ist im Servicemodus.
- **LEDs an allen Ausgängen leuchten rot**: Das Gerät wird eingeschaltet.
- **LEDs an allen Ausgängen blinken rot**: Die Wiederherstellung der Werkseinstellung läuft.

Die zwei LEDs in der Vorderseite zeigen den Zustand der WLAN- und Bluetooth-Verbindung an (nur bei ausgewählten Modellen). Wenn die LED für den WLAN-Anschluss grün leuchtet, ist die WLAN-Verbindung
aktiv. Leuchtet sie nicht, ist die WLAN-Funktion deaktiviert. Bei einem Problem mit der WLAN-Verbindung blinken die LEDs. LED.

2.10. Akustische Signalisierung

Eine akustische Signalisierung erfolgt in folgenden Situationen:

Einmaliges Piepen Das Gerät startet.

Zweimaliges Piepen Das Gerät wechselt in den Servicemodus.

Beginn der Wiederherstellung der Werkseinstellung.

Ende der Wiederherstellung der Werkseinstellung.

2.11. Kommunikation über die Schnittstelle KSHELL

Die Vorgehensweise wird am folgenden Beispiel erklärt:

1. Öffnen Sie das Fenster mit der Befehlszeile

2. Geben Sie den Befehl `telnet 192.168.10.100 1234` ein (ersetzen Sie die Adresse mit der Adresse Ihres Gerätes)

3. Das Gerät sollte ähnlich Antworten: `100 HELLO 00000000 - KSHELL V1.5`

4. Nun können Sie sich mit folgenden Befehl einloggen:

 Login Name Passwort

Wo Name der Benutzername und Passwort Ihr Passwort ist. Wenn Sie den richtigen Benutzernamen und das richtige Passwort eingegeben haben, lautet die Antwort seitens des Geräts 250 OK. Nun sind Sie angemeldet und können NETIO über die Befehle aus dem nachfolgenden Kapitel steuern.

Jede Relation bei der Kommunikation über die Schnittstelle KSHELL hat eine eingeschränkte Gültigkeit. Dauert die Inaktivität ca. eine Minute an, wird die Relation automatisch beendet. Wenn Sie die Relation aufrechterhalten wollen, können Sie den Befehl `noop` verwenden.
Übersicht der Befehle für KSHELL

login <name> <password>

quit

Abmeldung. Im Fall der Durchführung von Änderungen in den Systemeinstellungen wird das Gerät neu gestartet.

noop

Funktion zur Aufrechterhaltung der Verbindung, führt keine Operation durch.

port list xxxx

- es wird der Zustand aller Ausgänge ohne Parameter ausgelesen
- xxxx ist ein Befehl zur Steuerung aller Ausgänge auf einmal - anstatt x ergänzen Sie folgende Befehle:
 - 0 – Ausgang ausschalten
 - 1 – Ausgang einschalten
 - i – Unterbrechung des gegebenen Ausgangs auslösen
 - u – Ausgang ohne Änderungen lassen

Beispiel: Der Befehl port list 01ui schaltet den Ausgang 1 aus, schaltet den Ausgang 2 ein, lässt den Ausgang 3 ohne Änderungen und löst im Ausgang 4 eine Unterbrechung aus.

port <output> [0 | 1 | i | int]

Auslesen und Einstellung des Ausgangsstatus:

- wenn Sie nur die Ausgangsnummer ohne Parameter eingeben, wird der Ausgangsstatus ausgelesen (0 - ausgeschaltet / 1 - eingeschaltet)
- Die Ausgangsnummer mit dem Parameter 0/1 - schaltet den Ausgang aus/ein
- Die Ausgangsnummer mit dem Parameter 'int' oder 'i' - bewirkt die Unterbrechung des Ausgangs

Beispiel: Der Befehl port 2 1 schaltet den Ausgang Nummer 2 ein.
2.12. Beheben von Schwierigkeiten

Passwort vergessen. Reset zur Wiederherstellung der Werkseinstellungen

Wenn die Situation eintritt, dass Sie ihr Passwort vergessen haben, können sie Werkseinstellungen wiederherstellen. Diesen führen Sie durch, indem Sie die Tasten 1 und 2 beim Einschalten des Geräts gedrückt halten. Die Tasten halten Sie so lange gedrückt, bis das Gerät 2x piept. Während dem Wiederherstellungsprozess leuchten alle LEDs rot auf. Sobald die Werkseinstellungen zurückgeführt sind, erlöschen die Dioden.

Problem mit dem Firmware-Update

Tritt ein Problem beim Firmware-Update auf (zum Beispiel Netzausfall oder schaltet sich das Gerät vor der Beendigung des Updates aus), kann das Gerät im Firmware-Update-Modus zwangsgestartet werden. Hierfür drücken Sie die Taste Nr. 4 beim Einschalten des Geräts. Die Taste halten Sie so lange gedrückt, bis das Gerät piept. Anschließend loggen Sie sich im Browser mit der IP-Adresse des Geräts ein. Fügen Sie die Datei mit der Firmware entsprechend dem Kapitel, in dem die Firmware-Update beschrieben wird, ein und fahren Sie fort.

Austausch der Sicherung

Anhang A. Beschreibung der Lua-Sprache

NETIO4 nutzt die Skriptsprache Lua, die dem Benutzer ermöglicht, die Funktionalität des Geräts anhand von Benutzeraktionen zu erweitern. Diese Aktionen können auf äußere Impulse sowie auf eingehende CGI oder Ereignisse des eigentlichen NETIO4-Geräts reagieren, z. B. durch Versenden einer E-Mail an den Benutzer, Aufruf einer ausgehenden CGI-Anforderung an ein anderes Gerät u. Ä.

A.1. Grundlagen der Lua-Sprache

Ein einfacher Befehl kann wie folgt aussehen:

```lua
log("Hallo Welt!")
```

Die Funktion `log()` ist eine spezifische Funktion, die eine Meldung direkt in das Ereignisprotokoll des NETIO4 schreibt. Sie kann beispielsweise verwendet werden, um zu überprüfen, ob eine Aktion gestartet wurde, oder zum Erhalt anderer Informationen. Die untere Abbildung zeigt die anhand der aktivierten Regel geschriebene Erfolgsmeldung.

![Abbildung 23. Ausgabe der Funktion log()](image)

Abbildung 23. Ausgabe der Funktion log()
Die Funktion `log()` unterstützt auch das Einfügen eines Variableninhalts des Geräts direkt in den Ausgabetext:

```lua
log("Hallo Welt!");
-- Befehle mit Semikolon oder Leerzeichen trennen
log("Ereignisname ist: ${event.name}");
-- loggt den Ereignisnamen bei dessen Aufruf ein (wählt geeigneten Aktionsauslöser)
-- das Bindestrichpaar bezeichnet den Kommentaranfang
```

A.2. Spezifikation der Lua-Umgebung in NETIO4

Wegen Hardwareeinschränkungen verwendet NETIO4 die Lua-Sprache ohne Unterstützung der Dezimalzahlen. Die Arithmetik unterstützt daher nur ganze Zahlen (im Gegensatz zu standardmäßigen Sprachdistributionen). Alle Eingabewerte werden deshalb im Vielfachen der Zahlen angegeben, um die Genauigkeit zu bewahren - also z.B. die Temperatur 24,5°C wird im Regelcode mit der Ziffer 2450 dargestellt.

Außerdem bietet die Lua-Umgebung des NETIO4 einige spezifische Funktionen, die eine Mitwirkung des NETIO4 mit anderen Geräten ermöglicht.

A.3. Ansteuerung der Ausgänge

Durchschalten der Ausgänge


```lua
 devices.system.SetOut{output=3, value=false};
-- schaltet Ausgang Nr. 3 aus.
 devices.system.SetOut{output=1, value=true};
-- schaltet Ausgang Nr. 1 ein.
```

Warnung

Durch die Ausgangssteuerung mit Benutzeraktionen wird die automatische Funktion *Zeitschaltuhr* ausgeschaltet, falls sie am jeweiligen Ausgang eingeschaltet war.
Rücksetzen der Ausgänge


```
devices.system.ResetOut(output=4, resetDelay=10);
-- setzt den Ausgang Nr. 4 mit 10 Sekunden Verzögerung zurück.
```

A.4. Variables Gerät NETIO4

Interne variable Geräte vom Typ NETIO4 sind über das Objekt `devices.system` zugänglich. Beispielsweise wird die CPU-Auslastung über die Variable `devices.system.averageLoad` ermittelt.

<table>
<thead>
<tr>
<th>Verfügbarkeit</th>
<th>Name</th>
<th>Inhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>output1_state</td>
<td>Nimmt Werte an: on/off/starting/ resetting</td>
<td>Status Ausgang 1.</td>
<td></td>
</tr>
<tr>
<td>outputN_state</td>
<td>Nimmt Werte an: on/off/starting/ resetting</td>
<td>Status Ausgang N.</td>
<td></td>
</tr>
<tr>
<td>sessionCount</td>
<td>Nummer</td>
<td>Anzahl der jeweils angemeldeten Benutzer.</td>
<td></td>
</tr>
<tr>
<td>freeSpace</td>
<td>Speicherplatz in Megabyte</td>
<td>Freier Speicherplatz auf dem internen Flash-Speicher.</td>
<td></td>
</tr>
<tr>
<td>totalSpace</td>
<td>Speicherplatz in Megabyte</td>
<td>Der gesamte freie Speicherplatz auf dem internen Flash-Speicher.</td>
<td></td>
</tr>
<tr>
<td>averageLoad</td>
<td>Nummer</td>
<td>Stellt den durchschnittlichen CPU-Wert „system-load“ für die letzten 5 Minuten multipliziert mit 100 dar; Ideal ist ein kleiner Wert, da ein höherer Wert ein Zeichen für Leistungsprobleme ist.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verfügbarkeit</th>
<th>Name</th>
<th>Inhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputN_consumption</td>
<td>Wert in Watt (W)</td>
<td>Die tatsächlichen Stromverbrauch der Steckdose N.</td>
<td></td>
</tr>
<tr>
<td>outputN_cumulatedConsumption</td>
<td>Wert in Wattstunden (Wh)</td>
<td>Die tatsächlichen kumulierten Stromverbrauch der Steckdose N seit Messbeginn.</td>
<td></td>
</tr>
<tr>
<td>outputN_consumptionStart</td>
<td>Datum und Zeit</td>
<td>Datum und Uhrzeit der Messung der kumulierten Stromverbrauch ist auf der gegebenen Steckdose gestartet.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1. Internes variables Gerät

Variablen für gekoppelte Bluetooth-Geräte

Wenn NETIO4 mit BT Geräten gekoppelt wird, können sie die Verfügbarkeit dieser Geräte durch eine globale Variable `devices.<sensorName>.connected`, wobei `<sensorName>` ist der Wunschname welche beim koppeln eingegeben wurde. Diese Variable kann zum Beispiel verwendet werden, um Aktionen in Reaktion auf die Systemvariablen wurden aktualisiert Ereignis auszulösen.

Zur Bestimmung der Namen des jeweiligen BT-Gerät, das Ereignis für `Irgendein gerat` und `Gerät wurde getrennt` oder `Gerät ist wieder verbunden` Auslöser, verwenden `self.name` variabel.
Beschreibung der Lua-Sprache

<table>
<thead>
<tr>
<th>Verfügbarkeit</th>
<th>Name</th>
<th>Inhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETIO4 All</td>
<td>connected</td>
<td>Boolescher Wert</td>
<td>Status (verbunden/getrennt) gekoppelten BT-Gerät</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>Text-String</td>
<td>Name des BT-Geräts, was z.B. eine Aktion auslösen kann.</td>
</tr>
</tbody>
</table>

Tabelle 2. Bluetooth Variablen

Mit diesen Variablen und deren Werten lassen sich auch komplexe Beispiele realisieren, mehr finden Sie im Abschnitt A.10, „Beispiele“.

A.5. Aktionen von NETIO4


```lua
devices.system.SetOut{output=1, value=false}; -- schaltet Ausgang Nr. 1 aus
```

<table>
<thead>
<tr>
<th>Verfügbarkeit</th>
<th>Aktionsname</th>
<th>Argument</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Modelle NETIO4</td>
<td>SetOut</td>
<td>output Ausgang Nr. 1 bis 4</td>
<td>devices.system.SetOut{output=1, value=true};</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value true/false, aktiviert/deaktiviert den Ausgang</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ResetOut</td>
<td>output Ausgang Nr. 1 bis 4</td>
<td>devices.system.ResetOut{value=1, resetDelay=10};</td>
</tr>
<tr>
<td></td>
<td>CustomCGI</td>
<td>url</td>
<td>devices.system.CustomCGI{url="http://192.168.0.1/cgi-bin/foo.cgi"};</td>
</tr>
<tr>
<td></td>
<td>Reboot</td>
<td>ohne Argumente</td>
<td>devices.system.Reboot{};</td>
</tr>
<tr>
<td>Alle Modelle NETIO4</td>
<td>ResetCumulativeConsumption</td>
<td>output Ausgang Nr. 1 bis 4</td>
<td>devices.system.ResetCumulativeConsumption{output=1};</td>
</tr>
</tbody>
</table>

Tabelle 3. Geräteaktionen
A.6. Ereignis IncomingCgi als Aktionsauslöser

Die Anforderungen können über die Methoden „HTTP GET“ oder „POST“ gesendet werden. CGI-Anforderungen, die die GET-Methode verwenden, können direkt in die Adresszeile des Webbrowsers eingegeben werden:

```
http://192.168.0.1/event?foo=bar&baz=qux
```


```
> curl --data "foo=bar&baz=qux" http://192.168.0.1/event
```

wobei 192.168.0.1 die Adresse des Geräts NETIO4 ist. Die mit der Methode „GET“ oder „POST“ gesendeten Daten werden mit folgendem Lua-Code bearbeitet:

```
local output = "Incoming CGI request: ";
for key,value in pairs(event.args) do
    output = output .. " " .. key .. " = " .. value .. " ");
end
logf("%s", output);
```

und im Systemereignisprotokoll wird folgender Eintrag aufgezeichnet:

```
Incoming CGI request: (foo = bar) (baz = qux)
```

Mit so erworbenen Werten kann im Code weiter gearbeitet werden; siehe komplexes Beispiel im Abschnitt Abschnitt A.10, „Beispiele“.
A.7. Weitere Aktionsauslöser

NETIO4 bietet auch weitere Aktionsauslöser, die für die Aufgabenautomatisierung und Interaktion mit der Umgebung verwendet werden können. Bei der Erstellung von Benutzeraktionen muss ein geeigneter Auslöser gewählt werden, der Ihre Aktion aktivieren wird. Die Verwendung ist ähnlich wie beim Auslöser *Eingehende CGI Anfrage*, beschrieben im Abschnitt Abschnitt A.6, „Ereignis IncomingCgi als Aktionsauslöser“.

Wenn Sie NETIO4 All mit der Bluetooth 4.0 LE-Unterstützung benutzen, wählen Sie bitte gewünschte Gerät und Auslöser. Verfügbare Geräte sind: NETIO, gepaart BT-Gerät oder Gerät (um ein eine Aktion mit mehreren BT-Geräten auslösen zu können).

<table>
<thead>
<tr>
<th>Verfügbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktionsauslöser des Geräts NETIO4</td>
</tr>
<tr>
<td>Auslösername</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Alle Modelle NETIO4</td>
</tr>
<tr>
<td>Differenz</td>
</tr>
<tr>
<td>Zeitplan wurde gestartet oder gestoppt</td>
</tr>
<tr>
<td>Systemvariablen wurden aktualisiert</td>
</tr>
<tr>
<td>Eingehende CGI Anfrage</td>
</tr>
<tr>
<td>Gerät wurde getrennt</td>
</tr>
<tr>
<td>Das Gerät ist wieder verbunden</td>
</tr>
</tbody>
</table>

Tabelle 4. Aktionsauslöser

A.8. Spezielle Variablen

<table>
<thead>
<tr>
<th>Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>devices</td>
<td>Die schreibgeschützte Tabelle der Geräte und deren Variablen werden weiter oben beschrieben.</td>
</tr>
<tr>
<td>event</td>
<td>Die Tabelle, die mit aktuellen Ereigniswerten auf Grundlage eines gewählten Aktionsauslösers ausgefüllt ist, enthält folgende Positionen:</td>
</tr>
<tr>
<td></td>
<td>• device – Name des Geräts, das das Ereignis ausgelöst hat (z. B. system für NETIO4)</td>
</tr>
<tr>
<td></td>
<td>• name – Ereignisname (z. B. IncomingCgi)</td>
</tr>
<tr>
<td></td>
<td>• args – Tabelle der Ereignisargumente, abhängig von „event“.</td>
</tr>
</tbody>
</table>

Tabelle 5. Spezielle Variablen in Aktionen

Der Zugriff auf einzelne Positionen der Argumententabelle **event.args** ist durch eine Erweiterung dieser Variablen um den Namen des geforderten Arguments möglich. Es ist eine Alternative zum obigen Beispiel ohne die Befehle für **pairs** für das Scrollen der ganzen Tabelle **event.args**. Beim Verwenden des Auslösers *Eingehende CGI Anfrage* wird im folgenden Beispiel der Argumentenwert „bar“ mit dem Namen „foo“ der eingehenden CGI im Systemprotokoll eingetragen:

```lua
log($"event.args.foo")
```
A.9. Funktionen und Bibliotheken

Von den standardmäßigen Funktionen der Lua-Sprache können für das Programmieren der Aktionen die Funktionen `assert`, `error`, `ipairs`, `next`, `pairs`, `pcall`, `select`, `tonumber`, `tostring`, `toboolean`, `type`, `unpack` genutzt werden. Aus der Bibliothek `os` sind nur die Funktionen `os.date`, `os.difftime`, `os.time` verfügbar. Zur Verfügung stehen auch alle Funktionen aus den Bibliotheken `string` und `table`.

Des Weiteren können die für NETIO4 spezifischen Funktionen der Lua-Sprache verwendet werden:

delay

Die Funktion `delay(seconds, callback)` startet die Funktion „callback“ nach der eingegebenen Sekundenzahl. Die eigentliche Funktion `delay` wird sofort ausgeführt und die Funktion „callback“ läuft unabhängig vom Mastercode.

Beispiel:

```lua
-- Wir erstellen die lokale callback-Funktion
local function delayedDate()
    log("wir haben eine verzögerte Datumsaufstellung");
end

-- Wir planen eine Funktionsverzögerung
delay(5, delayedDate);
log("verzögerte Datumsaufstellung geplant"); -- diese Meldung wird sofort angezeigt.
```

Anmerkung

Die Folgefehler bei der Bearbeitung der verzögerten Funktionen werden standardmäßig nirgends aufgezeichnet. Dies kann evtl. mit der Funktion `pcall()` umgangen werden:

```lua
local function wrong()
    devices.non_existing.SetLED{enabled=0}
    -- Der Zugriffsversuch auf ein nicht vorhandenes Gerät und/oder eine nicht vorhandene Aktion verursacht einen Fehler
end

local function logWrongErrors()
    local result, errorMessage = pcall(wrong)
    if result == false then
        logf("Funktion fehlgeschlagen mit einem Fehler: %s", errorMessage)
    end
end

delay(1, logWrongErrors)
```

milliDelay

Die Funktion `milliDelay(milliseconds, callback)` funktioniert wie „delay“, verwendet jedoch Millisekunden anstatt Sekunden. Die minimal einstellbare Verzögerung beträgt 50 ms.

Die callback-Funktion kann auch direkt in einem Parameter definiert werden:
devices.system.SetOut{output=1, value=true}; -- schaltet Ausgang Nr. 1 ein
milliDelay(500, function() devices.system.SetOut{output=2, value=false} ein; end); --
schaltet Ausgang Nr. 2 nach 500 ms aus

log

Die Funktion `log(Meldung)` trägt eine Meldung im Ereignisprotokoll des NETIO4 ein, das über seine
Webschnittstelle zugänglich ist. Die Meldung kann Ersetzungscode in Form von `${Variable}` enthalten, der durch
die Werte der globalen Variablen im System ersetzt wird.

Beispiel:

```lua
log("Aktuelle CPU-Auslastung des NETIO4 beträgt ${devices.system.averageLoad}, Status Ausgang
Nr. 4 ist ${devices.system.output4_state}")
log("Ereignis ${event.name} wurde bearbeitet")
```

Hinweis

Eine mit `log()` durchgeführte Ersetzung kann nicht auf lokale Variablen zugreifen, daher wird der
nachstehende Code nicht funktionieren:

```lua
local foo = 1; log("Wert foo ist ${foo}"); -- Wird nicht funktionieren
```

Dies kann allerdings unter Verwendung einer globalen Variablen gelöst werden:

```lua
foo = 1; -- foo ist jetzt die globale Variable
log("Wert foo ist ${foo}");
```

oder mithilfe der Funktion „`logf`“, ohne diese Begrenzung:

```lua
local foo = 1;
logf("Wert foo ist %s", foo);
```

logf

Die Funktion `logf(messageFormat, ...)` funktioniert wie `log()`, jedoch ist `messageFormat` eine Kette mit
Ersetzungscode, die durch weitere Parameter von `logf()` ersetzt wird, unter denen auch Funktionen sein können.
Die wichtigsten Parameter für die Formatfestlegung sind:

- `%s` – Ausgabe als Kette
- `%d` – Ausgabe als Nummer

Beispiele:
Beschreibung der Lua-Sprache

logf("Zeit auf dem Gerät: %s, Ereignis: %s", os.date("%H:%M:%S"), event.name);
-- Druckt die lokale Zeit des Geräts und den Ereignisnamen für die automatisch ausgeführten
Aktionen
logf("UNIX Zeit auf dem Gerät: %d, Zahl der angemeldeten Benutzer: %d", os.time(),
devices.system.sessionCount);
-- druckt die Zeit im UNIX-Format sowie die Zahl der angemeldeten Benutzer

Wenn

Hinweis

Genaue Formatierungsoptionen, die von der Funktion log() angenommen werden, sind identisch mit
der Lua-Funktion string.format (http://www.lua.org/manual/5.1/manual.html#pdf-string.format)
und sehr ähnlich der Funktion printf(), die in der C-Sprache verwendet wird.

mail

Die Funktion mail(to, subject, text) sendet eine E-Mail mit vorgegebenem Text an den angegebenen
Empfänger. Betreff und Text der E-Mail nutzen die gleiche Codeerweiterung ${Variable} wie die Funktion log().
In der Ausgangseinstellung wird die E-Mail mit dem gleichen Betreff max. einmal in 5 Minuten versandt.

mail("john@example.com", "Aktuelle NETIO4-Auslastung", "Aktuelle Auslastung beträgt
${devices.system.averageLoad}")

Durch eine Betreffsänderung kann der E-Mail-Versand in der Ausgangseinstellung auf einmal pro Minute
eingestellt werden.

mail("john@example.com", "Aktuelle NETIO4-Auslastung beträgt ${devices.system.averageLoad}",
"Weitere Informationen");

Die maximale Häufigkeit der Nachrichtensendung mithilfe der Funktion mail kann über zwei optionale Parameter
eingestellt werden: minIntervalSec und intervalKey. Der Parameter minIntervalSec ermöglicht eine genaue
Intervalleinstellung der Nachrichtensendung. Der Ausgangswert ist 300 (5 Minuten). Der Parameter intervalKey
wird intern verwendet, um zu ermitteln, ob die gleiche Nachricht in der Vergangenheit bereits versandt wurde.
Ist der Parameter nicht eingestellt, wird der Nachrichtenbetreff dazu verwendet.

Diese optionalen Parameter ermöglichen eine bessere Intervallsteuerung für ein wiederholtes Versenden von E-
Mails. Der folgende Code setzt das Mindestintervall für wiederholtes Senden von Nachrichten in 30 Minuten
sowie einen bestimmten Intervallschlüssel so, dass alle Nachrichten, die mit diesem Code geschickt wurden, in
die gleiche Limitkategorie der Nachrichtensendung einbezogen werden, auch wenn der Betreff unterschiedlich
sein kann.

mail("john@example.com", "Ereignis mit Namen ${event.name} ist eingetreten", "Ein Ereignis
steht an", 30*60, 'some-event-coming');

Die Funktion mail() stellt den booleschen Wert (true oder false) zurück. Dieser bestimmt, ob die Nachricht
durch einen Filter zur Begrenzung der Nachrichtenanzahl im vorgegebenen Zeitintervall blockiert wurde.
Beschreibung der Lua-Sprache

local ret = mail("john@example.com", "mail", "hello", 60)
if ret == true then
 log("Wir versuchten, eine E-Mail zu senden")
 -- Wir weisen darauf hin, dass die E-Mail in Wirklichkeit momentan nicht verschickt werden muss
 -- Die Details dieser Situation werden im Protokoll der Systemereignisse aufgenommen NETIO4
else
 log("die E-Mail wurde nicht versandt, weil es häufiger als einmal pro Minute wäre")
end

ping

Die Funktion ping(address, timeout, callback) ermöglicht eine Überprüfung der Verbindungsfunktionalität zwischen dem NETIO4-Gerät und weiteren Geräten an einer bestimmten Adresse im Computernetzwerk. Das Zielgerät muss das ICMP-Protokoll unterstützen. Aufgrund der Geräteverfügbarkeit ist es möglich, eine benutzerdefinierte Aktion mit einem Aufruf der callback-Funktion auszuführen. Das optionale Argument ist die Geltungsdauer einer Anforderung in Sekunden.

ping{address="example.com", timeout=60, callback=function(o) log("duration: " .. o.duration); end}

Wie im vorherigen Beispiel gezeigt, kann die callback-Funktion von der ping-Funktion nach ihrer Ausführung eine Tabelle mit folgenden Argumenten und Rückfallwerten erhalten:

- success: ping success (true/false)
- duration: ping duration (value in milliseconds)
- errorInfo: error description (text)

Mit diesen Rückfallwerten können in das Ereignisprotokoll des NETIO4-Geräts Informationen über die Verfügbarkeit eines beliebigen Servers oder von anderen Geräten geschrieben werden. Verwenden Sie für das folgende Beispiel den Aktionsauslöser Systemvariablen wurden aktualisiert (die Aktion wird alle 10 s erfolgen):

-- ping example.com and log the result
local function logPingResult(o)
 if o.success then
 log("example.com ping OK in time: " .. o.duration)
 else
 log("example.com ping FAILED: " .. o.errorInfo)
 end
end

ping{address="example.com", callback=logPingResult}

Öffnen Sie nach dem Einfügen und Speichern der Regel das Ereignisprotokoll.
A.10. Beispiele

Eine Aktion zur Bearbeitung einer eingehenden CGI-Anforderung mit Statusänderung der Ausgänge

Das erste Beispiel zeigt eine Aktion zur Bearbeitung einer eingehenden CGI-Anforderung, die eine Statusänderung der Ausgänge beinhaltet. Speichern Sie die Aktion mit dem Auslöser **Eingehende CGI Anfrage**.


```
-- function for parsing port arg value and performing its action
local function portparse(s)
    local portnumber = 1;
    for c in string.gmatch(s, "%w") do -- accept only alphanumerical chars
        if portnumber > 4 then return end; -- break
        if c=="0" then
            devices.system.SetOut{output=portnumber, value=false}
        elseif c=="1" then
            devices.system.SetOut{output=portnumber, value=true}
        elseif c=="i" then
            devices.system.ResetOut{output=portnumber}
        else -- do nothing
            portnumber = portnumber+1;
        end
    end

    local port=event.args.port;
    local pass=event.args.pass;

    -- Set here your password. The password will be required in the incoming CGI request for this action to work.
    local accepted_pass="password";

    -- Comment out the following block of code if you are using more than one CGI-triggered action.
    if (not port) or (not pass) then
        log("CGI parser: PORT and/or PASS argument missing, please check your CGI command. Use following syntax for the control CGI http(s)://netio.ip/event?port=10iu&pass=password where accepting arguments for port 1 to 4 are: 0...off, 1...on, i...interrupt (reset), any other char for port skip (unused)");
        do return end; -- break (end of action)
    end

    if (pass==accepted_pass) then portparse(port)
    else log("CGI parser: Wrong password")
end
```
Aktion zur Ansteuerung eines Ausgangs auf Grundlage der Verfügbarkeit eines weiteren Geräts im Netzwerk


```lua
-- local user variables
local port = 4 -- Change output number of controlled port here
local device = "192.168.0.100" -- Change ping destination address here

-- callback function for ping function
-- comment out logf commands after debugging
local function pingAndRun(o)
    local portState = devices.system["output" ..port.. ".state"];  
    -- two dots "." for concatenation of the system variable name eg. output4_state  
    if o.success and (portState == "off") then
        logf("PING OK, state of output %d is %s, Enabling port %d", port, portState, port);
        devices.system.SetOut{output=port, value=true};
    elseif o.success and (portState ~= "off") then
        logf("PING OK, but state of output %d is %s, Do nothing", port, portState);
        -- do nothing if ping success and portState is different than "off"
    else
        -- do nothing if the device is unreachable
        -- or you can turn off the same output by uncommenting of following line
        -- devices.system.SetOut{output=port, value=false};
        logf("PING FAIL, state of output %d is %s", port, portState);
    end
end

-- main program with the callback function pingAndRun
ping{address=device, timeout=5, callback=pingAndRun}
```
Aktion für zyklische Auslass-Steuer


```lua
local function cycler(n)
  local function sw(z, state) devices.system.SetOut{output=z, value=state} end
  if n <= 0 then _G.cycler_active = false; return end
  if n % 2 == 1 then
    sw(1, true); sw(2, true); sw(3, false); sw(4, false); -- output actions
  else
    sw(1, false); sw(2, false); sw(3, true); sw(4, true); -- output actions
  end
  delay(10, function() cycler(n-1) end) -- delay between on/off states in seconds
end

if not _G.cycler_active then
  _G.cycler_active = true
  cycler(5) -- how many times
end
```

Aktionen, um Ausgänge basierend auf der Verfügbarkeit von Bluetooth-Geräten zu steuern


```lua
local function returnState()
  local actState=devices.sensorboard.connected;
  if prevState == nil then prevState = false; end;
  if actState == true and prevState == false then -- actual state connected, previous state unreachable
    retState = true; -- output should be ON
  elseif actState == false and prevState == true then -- actual state unreachable, previous state connected
    retState = false; -- output should be OFF
  else
    retState = nil; -- both states are still the same
  end
  prevState = actState; -- stores actual state as previous
  return retState;
end

local state = returnState()
if state ~= nil then
  devices.system.SetOut{output=1, value=state}; --change number of controlled port here
end
```
Schlussbemerkungen

Der Hersteller haftet nicht für technische oder typographische Fehler und behält sich das Recht vor, jegliche Änderungen am Produkt oder diesem Benutzerhandbuch ohne vorherige Ankündigung vorzunehmen. Diese Änderungen werden über die Webseiten des Herstellers verkündet. www.koukaam.se.

Der Hersteller übernimmt keine Gewährleistung jeglicher Art in Bezug auf die weder in diesem Handbuch enthalten Informationen, noch auf eine Untergarantie der Marktgleichgültigkeit, oder Eignung für einen bestimmten Verwendungszweck.

Der Hersteller leistet insbesondere keine Garantie für die durch eine unsachgemäße Produktverwendung oder Nichteinhaltung der Anweisungen und Empfehlungen im Benutzerhandbuch verursachten Mängel, und für die durch eine unfachmännische Tätigkeit Dritter verursachten Fehler, außer dem autorisierten Kundendienst des Herstellers.

Wir glauben, dass Sie mit unserem Produkt zufrieden sein. Im Falle von Fragen oder Anmerkungen in Bezug auf die Funktionalität des NETIO Produkt, zögern Sie bitte nicht uns zu kontaktieren.

KOUKAAM Team

KOUKAAM a.s.
Türkova 2319/5b
Prag 4, 148 00
Tschechische Republik
www.koukaam.se

© 2015 KOUKAAM a.s. Alle Rechte vorbehalten.
<table>
<thead>
<tr>
<th>Language</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgarian</td>
<td>С настоящего, Koukaam a.s. декларира, че това безжично устройство е в съответствие със съществените изисквания и другите приложими разпоредби на Директива 1999/5/EC.</td>
</tr>
<tr>
<td>Czech</td>
<td>Koukaam a.s. tímto prohlašuje, že tento Radio LAN device je ve shodě se základními požadavky a dalšími příslušnými ustanoveními směrnice 1999/5/ES.</td>
</tr>
<tr>
<td>Danish</td>
<td>Undretegnede Koukaam a.s. erklærer herved, at følgende udstyr Radio LAN device overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF.</td>
</tr>
<tr>
<td>Dutch</td>
<td>Hierbij verklaart Koukaam a.s. dat het toestel Radio LAN device in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van Richtlijn 1999/5/EG. Bij deze Koukaam a.s. dat deze Radio LAN device voldoet aan de essentiële eisen en aan de overige relevante bepalingen van Richtlijn 1999/5/EC.</td>
</tr>
<tr>
<td>English</td>
<td>Hereby, Koukaam a.s., declares that this Radio LAN device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Estonian</td>
<td>Käesolevaga kinnitab Koukaam a.s. seadme Radio LAN device vastavust direktiivi 1999/5/EÜ põhinõuetele ja nimetatud direktiivist tulenevatele teistele asjakohastele sätetele.</td>
</tr>
<tr>
<td>Finnish</td>
<td>Valmistaja Koukaam a.s. vakuuttaa täten että Radio LAN device tyyppinen laite on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.</td>
</tr>
<tr>
<td>French</td>
<td>Par la présente Koukaam a.s. déclare que l’appareil Radio LAN device est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.</td>
</tr>
<tr>
<td>Greek</td>
<td>Με την παρούσα Koukaam a.s. δηλώνει ότι radio LAN device συμμορφώνεται προς τα ουσιαστικά απαραίτητα και τα λοιπά σχετικά διαταγή της οδηγίας 1999/5/εκ.</td>
</tr>
<tr>
<td>Hungarian</td>
<td>Káskétlenul kínálja Koukaam a.s. a rádiós LAN eszköz integritatát a 1999/5/EÜ Alapvető követelmények és az 1999/5/EC irányelv egyéb előírásainak.</td>
</tr>
<tr>
<td>Italian</td>
<td>Con la presente Koukaam a.s. dichiara che questo Radio LAN device è conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.</td>
</tr>
<tr>
<td>Latvian</td>
<td>Ar šo Koukaam a.s. deklārē, ka Radio LAN device atbilst Direktīvās 1999/5/ES būtiskajiem noteikumiem.</td>
</tr>
<tr>
<td>Maltese</td>
<td>Hawnhekk, Koukaam a.s., jiddikjar li dan Radio LAN device jikkonforma mal-ħtiġijiet essenzjali u ma provvedimenti oħrajrelevanti li hemm fid-Direttiva 1999/5/EC.</td>
</tr>
<tr>
<td>Polish</td>
<td>Niniejszym Koukaam a.s. oświadcza, że Radio LAN device jest zgodny z zasadniczymi wymogami oraz pozostałymi stosownymi postanowieniami Dyrektywy 1999/5/EC.</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Koukaam a.s. declara que este Radio LAN device está conforme com os requisitos essenciais e outras disposições da Directiva 1999/5/CE.</td>
</tr>
<tr>
<td>Romanian</td>
<td>Koukaam a.s. declară că acest dispozitiv fără fir respectă cerințele esențiale precum și cele dispoziții relevante ale Directivei 1999/5/EC.</td>
</tr>
<tr>
<td>Slovak</td>
<td>Koukaam a.s. týmto vyhlasuje, že Radio LAN device splňa základní požadavky a všetky príslušné ustanovenia Smernice 1999/5/ES.</td>
</tr>
<tr>
<td>Slovenian</td>
<td>Koukaam a.s. izjavlja, da je ta radio LAN device v skladu z bistvenimi zahtevami in ostalimi relevantnimi določili direktive 1999/5/ES.</td>
</tr>
<tr>
<td>Spanish</td>
<td>Por medio de la presente Koukaam a.s. declara que el Radio LAN device cumple con los requisitos esenciales y cualesquiera otras disposiciones o exigibles de la Directiva 1999/5/CE.</td>
</tr>
<tr>
<td>Swedish</td>
<td>Härom intygar Koukaam a.s. att denna Radio LAN device står i överensstämmelse med de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.</td>
</tr>
<tr>
<td>Turkish</td>
<td>Koukaam a.s. bu kablosuz cihazın temel gereksinimleri ve 1999/5/EC yonergesindeki ilgili koşulları karşıladığı beyan eder.</td>
</tr>
</tbody>
</table>
EG KONFORMITÄTSERKLÄRUNG

Hersteller/Importeur: KOUKAAM a.s.
Adresse: Türkova 2319/5b
149 00 Praha 4
Tschechische Republik

Produktbeschreibung: NETIO4 DE v3, NETIO 4 ALL DE v3, NETIO4 FR v3, NETIO4 ALL FR v3

EMV:
Für das oben genannte Produkt wird hiermit bestätigt, dass es den wesentlichen Schutzanforderungen entspricht, die in der Richtlinie über die elektromagnetische Verträglichkeit 1999/5/EG festgelegt sind.

Harmonisierter Standard

Zur Beurteilung des Erzeugnisses hinsichtlich der elektromagnetischen Verträglichkeit wurden folgende Normen herangezogen:

EN 55022:2010
EN 61000-3-3:2013
EN 55024:2010
ETSI EN 301489-1 V1.9.2:2011
ETSI EN 301489 17 V2.2.1:2012
ETSI EN 300 328 V1.8.1

Niederspannungsrichtlinie:
Für das oben genannte Produkt erklären wir hiermit, dass es den grundlegenden Anforderungen der EG-Richtlinie 2006/95/EG zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten betreffend elektrische Betriebsmittel (Niederspannungsrichtlinie) entspricht.

Harmonisierter Standard

Zur Beurteilung des Erzeugnisses hinsichtlich der Einhaltung der Niederspannungsrichtlinie wurde folgende Norm herangezogen:

RoHS:
Für das oben bezeichnete Produkt erklären wir hiermit, dass es den grundlegenden Anforderungen der EG-Richtlinie 2011/65/EU über die Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (englisch: restriction of the use of certain hazardous substances in electrical and electronic equipment, kurz RoHS) entspricht.

Harmonisierter Standard

Zur Beurteilung des Erzeugnisses hinsichtlich der Dokumentation zur RoHS wurde folgende Norm herangezogen:

EN 50581:2012

Tschechische Republik, Prag, Mai, 4, 2015
Petr Seliger Vorstandsvorsitzender